Chapter
Overview

In This Chapter

Chapter 11

Development Methodologies

Recent developments in programming theories and technologies present

developers with a wider range of tools and techniques. The topics covered in
this chapter are designed to give guidance to those projects who choose to use
them.

See
Section

For Information On ...

Page

A

Prototyping
Overview
Benefits of Prototyping
Risks of Prototyping
Life Cycle Considerations

I-11-2

Joint Application Development (JAD)
Overview
Benefits of JAD
Risks of JAD
The JAD Process
Life Cycle Considerations

I-11-9

CASE Tools
Overview
Data Dictionaries
Design Support
Documentation Support

[-11-20

Rapid Application Development (RAD)
Overview
Benefits of RAD
Risks of RAD
Life Cycle Considerations

[-11-28

Object-Oriented (OO) Technology
Advantages and Disadvantages of OO
Performance Risks
Documentation Considerations
Configuration Management Considerations

I-11-37

SDLC Handbook, HB 5500-07

1-11-1

October 1998

Chapter 11, Development Methodologies

Section
Overview

Caveat

Section A
Prototyping

A prototype is a working model of the system or application under

development.

The scope of the model may range from reproducing or simulating a few

selected functions to a fully functional model.

Even a fully functional prototype by itself is not a complete application, and
cannot be put into production without additional follow-on development work.

If it were, it would be defeating the purpose of prototyping which is rapid

development of an easily modified model.

In This Section Topic See Page
Overview I-11-3
Benefits of Prototyping I-11-5
Risks of Prototyping I-11-6
Life Cycle Considerations I-11-8

SDLC Handbook, HB 5500-07 [-11-2 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Overview
Definition Prototyping is a technique for building a model of an application or parts of an
application that allows users and developers to:
* Visualize or define the system
» Refine the system in an iterative fashion
* Reach concurrence on the requirements and interfaces
» Simulate program and process flow
» Provide modifiable code for evolving into the production model
Prototyping is a technique used within the framework of a life cycle.
When to Use There are qualities that an application should possess to be a good candidate for

Prototyping prototyping. These include:

* Primarily an on-line transaction-oriented system

» Large multiple record types/relationships

» Willing users and project manager

» Time for iterations/incremental development

» Uncertain/ambiguous requirements

 Difficulty in expressing requirements

» Mainly screen/record manipulation (low algorithmic)
* Report or screen display intensive

* On-Line Analytical Processing (OLAP) systems

» Simple program or data handling logic

Continued on next page

SDLC Handbook, HB 5500-07 [-11-3 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Overview, Continued

Forms of
Prototyping

Types of
Prototyping

Data Usage in
Prototyping

Prototyping can take several forms:

At lower levels, report designers and screen generators can be used to
provide users a view of the reports and screens they will see in the final
product.

At higher levels, entire portions of the applications can be created quickly,
but without the full functionality of error handling, exception conditions,
recovery, security, etc.

At the highest level, the entire application can be prototyped for user testing
and requirements concurrence.

There are two types of Prototyping:

Evolutionary: The prototype continues to grow and evolve into a
production model as in a Rapid Application Development project.

“Throwaway”: A specific objective(s) for the prototype is/are set and once
these objectives are met, the model is discarded.

The data used to support a prototype may vary from having no data available to
using limited or test data.

Because Customs data are considered “Sensitive but Unclassified”, production
data (or copies thereof) cannot be used to support prototyping.

SDLC Handbook, HB 5500-07 [-11-4 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Benefits of Prototyping

Introduction

Benefits

Prototyping is an iterative process in which tools are used to develop models of
part or all of the end product. These models may provide an insight to flaws in
proposed system and enable the Systems Development Team to make
corrections early in the life cycle.

There are many benefits that can be derived from prototyping:

Users can see what is being built for them early in the life cycle and critique
it.

It encourages users to have input into the design process.

Users may understand and react to prototypes far better than paper
specifications. Often they fail to understand, or miss, important points in
paper specifications.

With a good tool, some prototypes can be quickly implemented.
Prototyping may catch errors and weaknesses before expensive design and
programming is done. Modifications or changes to designs are far less

costly.

Prototypes, or partial prototypes, may be of great help in joint application
development (JAD) sessions.

Prototypes may be valuable for communicating to developers what is
required.

Prototypes provide early work experience for users and may be used as a
training tool.

With appropriate software follow-on development, prototypes may evolve
into the final system.

SDLC Handbook, HB 5500-07 [-11-5 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Risks of Prototyping

Introduction Prototyping shares many risks associated with other development
methodologies and tools. These risks should be analyzed before a decision to
use prototyping is reached.

Project Risks Project risks associated with Prototyping include (but are not necessarily
limited to):

Management may not have a clear picture of actual project progress.

Configuration control of the numerous iterations can be difficult unless a
proper tool is selected.

Documentation can be weak or non-existent.
Integration of the iterations may raise problems late in the life cycle.

Requirements defects may be discovered later in the life cycle, resulting in
extensive re-work. “Scope creep” may be endemic.

Prototyping may or may not allow all individuals involved in the
development of the system to see the flaws.

Results can be misleading if all relevant features are not addressed (i.e.,
response times during peak usage periods).

If not required for a specific objective, it can be a waste of resources.

User-Related User-related risk most often center on a lack of self-discipline.

Risks

Users have a tendency to want to turn the prototype into a production
system without adequate consideration for security, required audit trails,
fallback, recovery, maintainability, performance, networking, or
documentation.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-6 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Risks of Prototyping, Continued

User-Related Quick and casual design techniques may replace well-structured design

Risks practices.
(continued)

» User expectations may become unrealistic.

» The user may take the prototype too literally when the implemented system
may look different.

» The user may not take the time to completely evaluate the prototype,
missing potential flaws.

SDLC Handbook, HB 5500-07 [-11-7 October 1998

Chapter 11, Development Methodologies Section A: Prototyping

Life Cycle Considerations

Introduction

Project
Initiation

Project
Definition

System Design

Programming
or Construction

Prototyping can be used during any or all of the following life cycle phases.
Even if prototyping is used in one phase, it need not be used in others.

Caveat: Prototyping does not relieve the developer of the need to develop the
appropriate SDLC documentation or conduct the appropriate reviews.

Prototyping may aid in the determination of the feasibility of a highly complex
project; e.g., “Feasibility Study” or “Proof of Concept”.

Reference: Volume I, Chapter 6, Project Initiation

Prototyping helps during the Project Definition Phase in the following ways:

* Determining System Requirements

» Improving the accuracy of the requirements

 Identifying problems and risks early in the life cycle

» Involving the user in the definition and functional requirements process

Reference: Volume II, Chapter 7, Section B, Project Definition.

Frequently the prototyping performed in the Project Definition phase also
prototypes a portion of the design. Extensive use of prototyping during System
Design is most beneficial where CASE tools are available to build the models.

Following completion, the design is baselined in the Critical Design Review.

Reference: Volume II, Chapter 7, Section C, System Design

Evolutionary prototypes and partial prototypes can be used to resolve technical
issues during Programming or Construction if necessary. If so, results must be
documented in the requirements and design as appropriate.

SDLC Handbook, HB 5500-07 [-11-8 October 1998

Chapter 11, Development Methodologies

Definition

In This Section

Section B
Joint Application Development (JAD)

Joint Application Development (JAD) is defined as a team-based approach to
analysis and decision-making. It is a joint venture between customers/users
and information systems personnel, centering around a structured workshop, or
JAD session.

Topic Page
Overview [-11-10
Benefits of JAD [-11-12
Risks of JAD [-11-13
The JAD Process [-11-14
Life Cycle Considerations I-11-19

SDLC Handbook, HB 5500-07 1-11-9

October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

Overview

Types of JADS There are three basic types of JAD:
* Planning JADs are used to:
» Determine how a project will be organized
» Prioritize projects or strategic planning
» Plan multi-site or multi-phased implementations

» Plan other JADs; i.e., determining the number of JADs needed, the JAD
objectives, schedules, participants, etc.

» Single JADs are used to obtain information in a single session, lasting from
one to five days. This is the most simple and most widely used form of
JAD.

Examples:

» Defining enhancements to a major system
» Revisions to an existing document

» Multiple JADs are used for related projects and involve a series of JAD
sessions, usually scheduled back-to-back.

» Output from one session is often used as input into the next session.
» The same participants are sometimes required for several sessions.

» Multiple systems or large complex systems with multiple functions are
good candidates for this type of JAD.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-10 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

Overview, Continued

When to Use

JAD

Projects that are candidates for JAD can be identified based on:

Criticality: Projects that are influenced by political or policy issues. These
projects are usually:

» Very large in project size or scope

» Highly visible

» Critical to the success of the organization’s mission

Diversity: Personnel with information, requirements, and needs from
multiple organizations are active in these projects. There are often multiple
priorities and locations.

Risk: Project risks that can be addressed by JAD include:

» Projects with troubled pasts

» Projects that have been started and stopped many times

» Extensions of a system that has operated poorly in the past

» Projects where the relationship between the developers and the user has
been very weak

» Diverse projects where the various groups of users are in disagreement
over the project

Time and budget constraints:

» JAD may decrease development time by compressing the process
necessary to gather a complete set of user requirements.

» JAD may result in better planning, thereby decreasing the amount of re-
work that may have to be done later in the project.

Communication: JAD can be helpful in presenting project benefits, goals,
objectives, or alternate approaches to those who might not have a clear
understanding of them or the overall project prior to the JAD.

SDLC Handbook, HB 5500-07 [-11-11 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

Benefits of JAD

Introduction

Consensus

User
Involvement

Communication

The benefits of using JAD may include accelerated system design, increased
quality of the final product, and improved customer relations.. Using JAD
techniques with an independent facilitator in decision-making meetings may
also ease the process of gathering a required consensus.

JAD may be used to reduce many short meetings attended by different groups
of people into one workshop attended by everyone involved in the project.
This produces the following benefits:

» Group consensus may shorten the traditional approval processes.

» Agreements and commitments may be finalized if the appropriate parties are
present.

* Project requirements may be better defined, negating the need for time spent
later to:

» Gather/document additional or overlooked requirements
» Obtaining clarification from users

The JAD methodology encourages user involvement in decisions and user
ownership of the results. This may result in:

* A more complete statement of user requirements to be satisfied by the
project

 Greater accuracy in the definition of the requirements

JAD helps to bridge the gap between users and information systems developers
in the following ways:

* The System Development Team can get information from the users first-
hand, reducing the possibility of miscommunication.

* The System Development Team and the users come to understand the
other’s environment, activities, and overall requirements.

SDLC Handbook, HB 5500-07 [-11-12 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

Risks of Using JAD

Introduction

Selecting
Qualified
Participants

The Business
Sponsor

Reasonable
Objectives and
Expectations

Trained
Facilitator

Careful planning is essential to increase the likelihood of realizing the
maximum benefits of a JAD session.

In order to ensure that the right people are in the session, the following
questions must be asked:

* Does this individual know enough about the subject to make a genuine
contribution?

* Does this person have the authority to make binding decisions or resource
commitments if necessary? If not, am I (as a manager) willing to delegate
such authority in this matter?

If the answer to either of these questions is “no”, second thought should be
given to assigning that individual to a JAD.

* Does this individual have a personal agenda that might suborn or sabotage
the group’s efforts or the results?

If the answer to this question is “yes”, the individual should not be assigned
toa JAD.

Business Sponsor(s) involvement is essential for a successful JAD. Without
resource commitments in the form of time, personnel, and funding (when
necessary), a JAD session cannot succeed.

The appropriateness of the objectives and expectations can be determined by
examining the following factors:

» Complexity of the questions to be addressed by the group
» The time allotted in the development schedule for the JAD process
» The presence or absence of key stakeholders and/or their representatives

The absence of a well-trained facilitator can have a major, negative impact on
the JAD sessions.

SDLC Handbook, HB 5500-07 [-11-13 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

The JAD Process

Introduction Organizing a successful JAD involves three phases
* Pre-session Activities
» Workshop Activities

» Post-session Activities

Each phase is discussed below.

Pre-Session There are five pre-session activities that must be completed:
Activities
* Definition: During this activity, an accurate assessment of the project
determines:

» The biases and assumptions which may be inherent in the project
» The viability of using JAD

» Team roles and players

» Scope and boundaries of both the project and the JAD

» The level of management commitment

» Any relevant background.

* Research focuses on the perspective of the customers in order to:

» Validate findings

» Clarify pertinent political and cultural issues

» Address particulars of language and jargon

» Identify the general business being addressed by the project

* JAD Deliverable Definition and Data Capture Design focuses on:
» Further project definition
» Designing and developing the means of recording workshop data

» Workshop deliverables are determined

Golden Rule of JAD: If it is not written down or recorded in some agreed-to
fashion, it did not happen and does not exist.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-14 October 1998

Chapter 11, Development Methodologies

Section B: Joint Application Development

JAD Process, Continued

Pre-Session

Activities
(continued)

Workshop
Activities

Session Structure and Schedule focuses on producing the:

» Workshop technical agenda
» Workshop contents
» Final schedule

In addition, scripts are developed and sequencing, numbers, and lengths of
workshops are determined.

Workshop Readiness: Here commitment to proceed is established, kickoff
meetings occur, and logistics are finalized.

Workshops are the heart of the JAD process. Each workshop is a team-
oriented, consensus-based decision-making process with its own specific
technical objectives.

General Objectives: In addition to the technical objectives, each JAD
workshop must meet the following general objectives:

» Identify and resolve critical project issues
» Achieve consensus through structured exercises
» Construct a solution documented in a deliverable

Participation: All participants are considered to be equals, with equal
ability to influence the final decisions.

Issue Resolution/Disposition: When a question cannot be resolved, it is
designated an open issue. Open issues are dealt with in one of three
manners:

» An issue may be resolved through group discussion
» An issue maybe added to a list of assumptions to be validated later
» An issue may be added to a list of unresolved issues

At the end of the session, all assumptions and unresolved issues are
assigned to appropriate personnel or subgroups for research, resolution,
and/or validation.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-15 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

JAD Process, Continued

Post-Session Once the JAD workshop has been completed, the task of finalizing the JAD
Activities deliverable begins. This task includes:

+ Validation of workshop information

» Resolution of unresolved issues

+ Validation of workshop assumptions

* Production of the JAD workshop deliverable

« If appropriate, integration of this JAD workshop deliverable with other
JAD workshop deliverables

Essential Roles There are six essential roles associated with Joint Application Development.
and
Responsibilities

Role Responsibilities

Facilitator * Creating and maintaining the process the JAD will
use

* Creating and maintaining the meeting structure
* Leading the discussions

» Challenging the group to come to consensus or
closure when necessary

Continued on next page

SDLC Handbook, HB 5500-07 [-11-16 October 1998

Chapter 11, Development Methodologies

Section B: Joint Application Development

The JAD Process, Continued

Essential Roles
and
Responsibilities
(continued)

Role Responsibilities
Documentation » Assisting with the selection of documentation
Specialist methods/tools

Note: If the JAD session consists of more than four or
five individuals, it may be advisable to have two
recorders.

Documenting the entire JAD process

Preparing an initial draft of the agreed-upon
deliverables

Preparing the final draft of the deliverables based on
comments from all participants

Business Sponsor

Setting objectives and expectations for the JAD
sessions

Ensuring that the System Development Team has
access to and commitment from the users

Ensuring that the proper people are available to
attend the JAD session

Providing any extra funding (i.e., travel funds, etc)
required by the JAD

Project Manager

Delivering of project work products
Coordinating the project effort

Ensuring that strong communication exists between
the users and System Development Team

Continued on next page

SDLC Handbook, HB 5500-07

-11-17 October 1998

Chapter 11, Development Methodologies Section B: Joint Application Development

The JAD Process, Continued

Essential Roles

Role Responsibilities
and
Responsibilities | {jger Participating in the JAD session(s)
(continued)

* Supplying business area knowledge to be used in
system development

System * Participating in the JAD session(s) as appropriate
Development
Team » Ensuring that the system to be developed is realistic

* Ensuring that the system required can be delivered
when the users need it

* Ensuring that the system makes the most effective
use of the organization’s technological architecture

Optional Roles There are two optional roles associated with Joint Application Development.
and
Responsibilities

Role Responsibilities

Technical Expert |« To provide special knowledge or expertise on a
specified range of technical matters

» To provide experience-based opinions on technical
issues under discussion

Note: These activities are performed at the express
invitation/request of the JAD participants.

Observer » Attending the sessions but not actively participating

SDLC Handbook, HB 5500-07 [-11-18 October 1998

Chapter 11, Development Methodologies

Section B: Joint Application Development

Life Cycle Considerations

Introduction

Types of
Outputs

Life Cycle
Phases

The JAD process can be adapted to accommodate many types of projects and
stages in the life cycle.

The following are examples of JAD outputs:

Requirements Specifications
Systems Modifications
Re-engineered Business Processes
Report Layouts

Screen Designs

Documentation

Project Initiation Phase: During this phase JAD may contribute to defining
the problem or opportunity that the user has identified and planning the
project to solve the problem or achieve the customer’s goal.

Project Definition Phase: During this phase, JAD helps in determining what
the system will do, what functions the system will provide, and the work
flow.

System Design Phase: JAD may support how this will be accomplished,
including the development of design specifications for data elements,
screens and reports. JAD has also been used successfully to define a
system’s logical database design.

Programming Phase: Technical JADs may be held within the programming
environment to resolve issues and challenges.

Implementation Phase: Renewed commitment from the users may be
obtained using JAD to update the initial implementation plan.

Operations Phase: Major enhancements or changes to the basic design
assumptions may benefit from using a JAD approach.

SDLC Handbook, HB 5500-07 [-11-19 October 1998

Chapter 11, Development Methodologies

Section
Overview

Types of Case
Tools

Essential
Components

In This Section

Section C
CASE Tools

This section on computer-aided software engineering (CASE) tools will
provide the reader with a generic understanding of this software development
technology.

* Front-end CASE tools: Picture drawers or screen painters that use graphics
to represent concepts or programming objects

* Back-end CASE tools: Code generators that use the power of the computer
to derive detailed information from less detailed specifications

+ Stand-alone CASE tools: Tools that address limited portions of the life
cycle

» Integrated CASE tools: Tools that automate the entire life cycle with a
model providing the framework

Two essential components for automated software development are:
+ Data dictionaries

» Design dictionaries: which include third, fourth, and fifth generation data
(GD) base management systems (DBMSs).

These support the development of data models and procedure models, which
are then implemented with the most appropriate software and the most
appropriate generation of programming languages (GLs).

Topic See Page
Overview I-11-21
Data Dictionaries I-11-23
Design Support I-11-26
Documentation Support I-11-27

SDLC Handbook, HB 5500-07 [-11-20 October 1998

Chapter 11, Development Methodologies

SDLC Handbook, HB 5500-07 [-11-21 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Overview

Definitions Computer-Aided Software Engineering (CASE): A generic term that refers to
tools that support the automation of software development. It encompasses all
stages of the software development life cycle. It is based on a rigorous
methodology, with software tools to automate application of that methodology
by development staff and users.

CASE Tools: An integrated set of software tools and automated programs that
simplify application development, improve system quality, and enhance
productivity.

Good CASE The best CASE tools provide:
Tools
» Database management systems
* Multi-task application managers
* Program management aids
* Decision support systems
* A comprehensive tool chest, including:
» Document and spreadsheet tools
» Modeling and object tools
» Structured Analysis tools
» Artificial intelligence tools

 Idea processors

* Mathematical programming

Continued on next page

SDLC Handbook, HB 5500-07 [-11-22 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Overview, Continued

Good CASE e Simulation
Tools
(continued)

CAD/CAM and Simulation
» Expert Systems
» Languages

Note: Not all CASE tool products are fully integrated and seamless.

SDLC Handbook, HB 5500-07 [-11-23 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Data Dictionaries

Functional » Data dictionaries assist in the requirements specification by allowing the
Characteristics CASE tool to automate the required cross-checks.

of Data

Dictionaries A design dictionary may be an expert system for automated analysis, design

and development support.

* In their ultimate form, they can automatically generate fully executable
systems directly from design specifications prepared by users.

Dictionary Data dictionaries and design dictionaries are categorized into four main classes.
Class Summary
Class | Dictionary Type Software Type'
1 Passive data dictionaries For 3GD, 3GL and 4GL

Integrated active data dictionaries | For 3GD, 4GD, 3GL and 4GL

2
3 Data-driven design dictionaries For 3GD, 4GD, 3GL and 4GL
4

User-driven expert design For 3GD, 4GD, 5GD, 3GL,
dictionaries 4GL and 5GL

"Types: 3GD = Third Generation DBMS
4GD = Fourth Generation DBMS
5GD = Fifth Generation DBMS
3GL = Third Generation Language
4GL = Fourth Generation Language
5GL = Fifth Generation Language

Continued on next page

SDLC Handbook, HB 5500-07 [-11-24 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Data Dictionaries, Continued

Characteristics
of Class 1 Data
Dictionary

Characteristics
of Class 2 Data
Dictionary

Characteristics
of Class 3 Data
Dictionary

Class 1 dictionaries provide no active support to the design process.
They are data administrator and database administrator tools.

Their support is passively directed to the generation of various database
schemata for physical database implementation once data definition and

design have been completed.

They are used primarily for third generation DBMS products and languages,
with some limited application for 4th generation languages (GLs).

Class 2 dictionaries provide more integrated support for 4GLs and for some
3GLs, integrating the languages they support with the third or fourth
generation DBMS products on which those languages are implemented.

Class 2 dictionaries are often proprietary, developed specifically to support
proprietary DBMS products and languages.

They are referred to as ‘active’ dictionaries in their support for database
design and implementation.

Their support for analysis and design is passive; they are wholly dependent
on the expertise of analysts.

Class 3 dictionaries are oriented towards technical personnel.

They are products developed for use by experienced analysts and
technicians as well as data administrators and database administrators.

They provide assistance in analysis and design, supporting interactive
graphical design by experienced systems development staff.

These design dictionaries record the graphical design documentation for
later revision and refinement by data administration staff.

They are used to design both third and fourth generation databases and
systems which use 3GLs and 4GLs.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-25 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Data Dictionaries, Continued

Characteristics
of Class 3 Data
Dictionary
(continued)

Characteristics
of Class 4 Data
Dictionary

Development staff provide the technical expertise, while users are involved
only in reviewing the resulting diagrams and designs.

Class 3 dictionaries cannot support the active user-driven analysis, design
and development support.

Class 4 expert design dictionaries are user driven.

The expert design support of class 4 dictionaries enables that software to
progressively ‘learn’ about the system being designed.

SDLC Handbook, HB 5500-07 [-11-26 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Design Support

Introduction

Definitions

Model
Integration

CASE tools support system and process design by supporting both data models
and procedure models. If structured analysis and structured design are
supported, data flow diagrams and structure charts are also modeled.

Data Model: Comprised of a data map and data definitions documented in an
entity list. It provides feedback for identification of information requirements.

Data Map: A data map provides a graphical representation of data entities and
the associations between them for detailed user review.

A data map and its data definitions directly support each other in a data model.

Procedure Model: A procedure model can be derived from a data model. It
comprises a procedure map and processing definitions in a procedure list. It
documents the logic required to process the data represented by the data model.

Procedure Map: A procedure map provides a graphical representation of
procedural logic and business conditions to be satisfied. It provides feedback
to users for identification of their processing needs.

A procedure map and its process definitions directly support each other in a
procedure model.

Modeling combines the data model and the procedure model in an iterative
process: changes in definitions must be reflected as appropriate in the
supporting data and procedures maps, and vice versa.

The CASE tool should automatically integrate a data model and its associated
procedure models.

SDLC Handbook, HB 5500-07 [-11-27 October 1998

Chapter 11, Development Methodologies Section C: CASE Tools

Documentation Support

Introduction

Good CASE
Documentation
Tools

Much documentation is produced throughout the systems development life
cycle. This documentation must be maintained so that it is complete, consistent
and up-to-date.

The software automatically produces updated documentation fully
consistent with the applied changes.

Subject databases, implementation clusters and project plans are
automatically derived, highlighting the impact of the change.

Supporting detailed data and strategic plan documentation is automatically
produced.

Changes in priority areas can be readily identified for early development and
delivery of systems.

Procedure maps are then developed from the derived clusters and updated
data maps.

Users can review the business impact of the change and refinements can be
made where necessary, leading to further active and automatic maintenance
of documentation.

The procedure models, the data model, and their supporting dictionaries are
automatically updated where necessary.

SDLC Handbook, HB 5500-07 [-11-28 October 1998

Chapter 11, Development Methodologies

Section D
Rapid Application Development (RAD)

Section Rapid Application Development (RAD) is a development technique that

Overview enables organizations to respond quickly when the requirements are time-
sensitive and mission-critical. RAD is effective when the life cycle used is
optimized for high-speed development.

Definition Rapid Application Development (RAD) is a calendar-driven approach to
development that imposes limits on the time available for specifying
requirements, building prototypes, and constructing applications.

It encourages users to:

* Prioritize requirements
» Establish and recognize scheduling and resource limitations.

In This Section Topic See Page
Overview [-11-29
Benefits of RAD [-11-31
Risks of RAD [-11-33
Life Cycle Considerations I-11-34

SDLC Handbook, HB 5500-07 [-11-29 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Overview

RAD
Techniques

Small
Teams/Mentors

Prototyping

CASE Tools

RAD uses a combination of five mechanisms/techniques to accomplish the goal
of meeting the requirements quickly. Used together with a well-defined and
planned methodology, these techniques allow applications to be built much
faster while maintaining quality.

Each is discussed below.

One key to fast development is using experienced small teams and/or
individual mentors that have received intensive training in the use of CASE and
code generation tools and supporting techniques and methodologies.

Prototypes built prior to the RAD effort may be used to clearly communicate
the basic requirements of the application. In some cases, output created by the
prototype may serve as initial input into the RAD effort.

Prototype details are successively refined until sufficient design information
has been accumulated to generate the code for the application.

Reference: Volume I, Chapter 11, Section A, Prototyping

CASE tools may perform a number of functions in the RAD environment:

* Process and data modeling

 Structure charting

* Code generation

» Generation of physical databases

» Generation of documentation and project management data
» Storage of design information in a central repository

Note: Access to a CASE tool with a repository feature is critical to realizing
the full value of using RAD. This technique will be less effective until the

repository is populated with previous models as it relies heavily on re-use.

Reference: Volume I, Chapter 11, Section C, CASE Tools

Continued on next page

SDLC Handbook, HB 5500-07 [-11-30 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Overview, Continued

Joint The communication of specifications from users to analysts may be facilitated

Application in RAD through the use of Joint Application Development (JAD) workshops.

Development RAD uses a CASE repository to capture the requirements and design
information generated during a JAD session.

Reference: Volume I, Chapter 11, Section B, Joint Application Development

Prioritization ~ Users must prioritize requirements and recognize that getting the application
into production on schedule is the primary goal. The priorities established by
the users dictate the order of the functional development and deployment.

There is no time in the schedule for “scope creep”.

SDLC Handbook, HB 5500-07 [-11-31 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Benefits of RAD

Overview of
Benefits

Coordination

Time
Considerations

Defect
Elimination

Consistency

There are four major benefits to using RAD:

* Coordination

» Time Considerations
* Defect Elimination

* Consistency

Each benefit is discussed in greater detail below.

The RAD development technique, in conjunction with an Incremental life
cycle, encourages the review and coordination of subsystem functional
requirements with the end users in a timely fashion.

User knowledge and experience are incorporated through the use of JAD
workshops. User needs are met more effectively because they are continuously

involved in the development process.

Reference: Volume I, Chapter 11, Section B, Joint Application Development

RAD may allow the SDLC life cycle phases to overlap, thereby shrinking the
total development time of the project.

Caveat: In order to reap the full benefit of phase overlap, the project’s
development process must be well-planned before RAD is initiated.

The iterative process of RAD encourages early defect detection. This allows
for efficient maintenance and change support.

Code is automatically generated from the design as much as possible, thereby
minimizing the amount of human-generated code and the potential for human
error.

All design specifications are stored in the repository and extensively re-used,
thereby providing consistency within and between applications.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-32 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Benefits of RAD, Continued

Object- RAD may be useful in an Object-Oriented environment because:
Oriented
Technology « RAD encourages heavy re-use of the models which exist in the repository.

» RAD takes advantage of the data residing in an integrated dictionary.

Reference: Volume I, Chapter 11, Section E, Object-Oriented (OO) Technology

SDLC Handbook, HB 5500-07 [-11-33 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Risks of RAD

Who Should The decision to use RAD should not be user-driven. Appropriate management
Decide? and development team personnel must make an initial evaluation to determine
if a proposed system is a candidate for this technique.

Management To use RAD successfully, it is critical that full management support and

Support commitment is available to remove obstacles to completing each cycle on time.
This commitment must include all resources (personnel, funding for overtime,
computer resources, etc.) necessary to meet the established schedule.

User Extensive involvement and commitment from the user is required. If the user
Commitment is unwilling or unable to commit the resources (knowledgeable personnel and
time) necessary for timely inputs and reviews, RAD should not be used.

Project Control The following project control issues must be addressed:

» Change Control: The scope of requirements for each release should be
clearly delimited to avoid “scope creep”.

* Because the number of iterations and changes is unspecified at the
beginning of the project, a RAD effort can be hard to manage.

* All documentation must be clearly completed and updated as required
during each RAD effort, even if re-work will be needed later.

SDLC Handbook, HB 5500-07 [-11-34 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Life Cycle Considerations

Life Cycle
Impact

Project
Initiation Phase

Project
Definition
Phase

When using RAD, the life cycle phases are combined and overlapped, yet
baselines must be established and maintained.

Note: The phases do not change from a standard Waterfall Life Cycle except in
order of completion.

Most RAD projects will be considered high-risk projects due to short delivery
cycles and potentials for complexity.

A feasibility study is completed as part of the Cost/Benefit Analysis. Ifthe
Business Sponsor agrees, the Project Plan is then developed by the Project
Initiation Team. The plan should include:

» The declaration that this is to be a RAD project
* A list of System Development Team members
* Other pertinent tailoring information

The project schedule should specify the amount of time allotted to
accommodate reworks or go-backs to earlier stages as more attractive

alternatives are identified, new issues arise, or priorities change.

Reference: Volume I, Chapter 6, Project Initiation.

The users must set their priorities and determine which requirements will be
implemented in the initial release of the application. The System Development
Team works closely with the users to build an understanding of the total system
requirements, individual and team capabilities, the tools to be used, and the
time frame.

Detailed elaboration of requirements may be deferred until later phases. As the
software is built, it is expected that design options will stabilize as standards
are developed and invoked.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-35 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Life Cycle Considerations, Continued

Project
Definition
Phase
(continued)

System Design
Phase

The Baseline Definition is completed only upon agreement of the Systems
Development Team and the Business Sponsor. Further changes will be
accepted as Change Requests and will be dealt with by the Change Control
Board.

Reference: Volume II, Chapter 7, Section B, Project Definition.

The System Design Phase loosely follows the requirements set in the Definition
Phase. In projects using new technology, the design is done concurrently with
the development and coding phases.

It is expected that most of the rework and go-backs will occur during this
phase. Frequent quality assurance reviews such as design reviews and peer
reviews/code walkthroughs are helpful in gaining the most value from RAD.

References:

* Volume II, Chapter 7, Section C, System Design
» Volume I, Chapter 3, Section C, Technical Reviews

Continued on next page

SDLC Handbook, HB 5500-07 [-11-36 October 1998

Chapter 11, Development Methodologies Section D: Rapid Application Development

Life Cycle Considerations, Continued

Programming
or Construction
Phase

Implementation
or Transition
Phase

Operations
Phase

Coding for the application may be done concurrently with the System Design
Phase, particularly when new technology is introduced.

Role Responsibilities

System Perform the unit and integration testing of the system
Development Team | under construction.

User * The users must understand and acknowledge that
there will be several releases until all requirements
are met. This should be documented in the Project
Plan.

 If the user feels that there is a misunderstanding of
the functional requirements, they must take this to
the Systems Development Team immediately.
Failure to do so may delay product delivery.

Reference: Volume II, Chapter 7, Section D, Programming or Construction

Initial implementation (i.e., piloting) will be done on the testing platform.
Lessons learned from each release will be documented and shared with the
group responsible for implementation.

Requirements, design, security, and system documents are updated during each
release.

Production implementation occurs after all development associated with an
individual release is complete and the Operational Readiness Review for the

individual release has been conducted.

Reference: Volume II, Chapter 7, Section F, Implementation or Transition

Maintenance may be done by a group other than the System Development
Team. Therefore, it is imperative that all documentation be complete.

SDLC Handbook, HB 5500-07 [-11-37 October 1998

Chapter 11, Development Methodologies

Section E
Object-Oriented (OO) Technology

Description Object-Oriented (OO) technology:

+ Is an approach to software construction that (in the long run) may solve
some of the classic problems associated with the increasing complexity of
large-scale software development and maintenance

» A technique for system modeling -- either a software system or a system in a
wider context: software and hardware

Definitions Object: A bundle of data (also known as the attributes of the object) and
operations (also known as its methods) that can act on the data. All objects
have identity and are distinguishable.

Class: A template for multiple objects describing how the objects are
structured internally.

Inheritance: A relationship among classes, wherein one class shares the
structure or behavior defined in one (single inheritance) or more (multiple
inheritance) other classes. This leads to a hierarchical structure of “parent” or
superclasses, each with one or more “children” or subclasses below them.

Each class has its own
characteristics PLUS the

Imports ALL the characteristics of
| ALL the classes above it.
| [|
Agricultural Textiles Machines
Products
[
| [|
Coats Sleepware Shirts
[
[1
Children’s Adult
Sleepware Sleepware

Continued on next page

SDLC Handbook, HB 5500-07 [-11-38 October 1998

Chapter 11, Development Methodologies

Object-Oriented (OO) Technology, Continued

Life Cycle

Core Concept

In This Section

Because object technology is built on the idea of layers and clusters of
interrelated function groups, it may lend itself most easily to the use of an
Incremental Life Cycle or an Information Engineering Life Cycle.

References:

* Volume II, Chapter 8, Incremental Life Cycle
* Volume II, Chapter 9, Information Engineering Life Cycle

The core concept of OO technology is defining the world in the realm of
objects and putting like objects together into classes. These objects can then be
translated into code and the relationships between objects are better understood.

Topic See Page
Advantages and Disadvantages of OO I-11-39
Performance Risks [-11-40
Documentation Considerations I-11-41
Configuration Management Considerations [-11-43

SDLC Handbook, HB 5500-07 [-11-39 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Advantages and Disadvantages of OO

Advantages The advantages of OO technology include:

Once a stable object library is in place, object reuse allows software to be
developed in a fraction of the time and cost of conventional methods.

Object technology may result in systems which better solve the business
problem that they address.

In many cases, individual objects may be modified without significantly
affecting other objects. This makes the software easier to modify and
maintain. It also allows the software system to grow and evolve in response
to changing circumstances.

Disadvantages A few of the disadvantages of OO technology are:

Up-front costs to institute OO (or any other new technology) in an
organization are substantial. Costs may include:

» Development Platforms

» Tools

» Training

» The time required to develop a stable library of reusable objects

Without the use of software development tools, documentation/tracing
requirements are difficult to meet and have not been thoroughly
incorporated into any OO methodology at this time.

The test preparation (i.e., development of test scenarios, test specifications)
may be more difficult to do if there is a lack of a clear method or tool for
documenting requirements.

SDLC Handbook, HB 5500-07 [-11-40 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Performance Risks

Introduction

Messaging

Cascade Effect

Mainframe
Paging and
Swapping

Encumbrance
of Classes

Allocation of
Objects

There are a number of performance risks associated with using OO technology
in a mainframe environment. Any one of these may have an adverse impact on
system performance.

Definition: An operation that one object performs on another.

Compared to a procedural language, there is a definite performance cost for
sending a message from one object to another. In the worst case, a message
may take nearly three times as long as a simple subprogram call.

OO systems are developed in layers. Individual functional groupings are
generally very small, since they build on lower-level functional groupings.
However, this has a cascade effect in time required as messaging moves down
through the layers. For applications in which time is a limited resource,
messaging may be unacceptable.

Most mainframe compilers allocate object code in segments, with the code for
each compilation unit placed in one or more segments. This model assumes a
high degree of co-location; subprograms within one segment call subprograms
within the same segment. However, in OO systems, there is rarely such co-
location. This may lead to thrashing during execution.

If a class is at the bottom of the hierarchical structure, it may have many
superclasses, whose code must be included when linking to the most specific
class.

Allocating an object is a dynamic action that uses more computing cycles
because of the extra commands that must be issued to manage processor
memory resources. For some time-critical applications, one cannot afford the
extra cycles needed to manage allocated objects.

SDLC Handbook, HB 5500-07 [-11-41 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Documentation Considerations

0O Project
Requirements

Style Guide

Use Case

In addition to the regular project documentation, the System Development
Team will develop a Style Guide as one of the first activities of an OO project.

Also, Use Cases and Event Diagrams are required to be developed by projects
using the OO methodology to clarify definitions for requirements and objects.

Due to the lack of sufficient requirements documentation in the OO
methodology, the System Development Team will also develop, document, and
use a mechanism to track the requirements supported by the use cases and
event diagrams. This mechanism to track requirements will also aid in the
formal and informal testing of the system being developed.

The Style Guide will:

» Show the manner in which the objects and classes will be represented
» Show how the requirements will be documented for use by the testers
 Identify any tailoring of the requirements document.

The style selected will be dependent upon the availability of a tool for the OO
development effort.

Definition: A special sequence of transactions in a dialog between a user and
the system. A given use case denotes some function or business process.

Use Case shall be the mechanism for documenting requirements. Use Cases
shall include:

» Use Case name

» Short Description

* Diagram Scenario

* Assumptions

* Referenced Use Cases

» Issues/concerns

» Additional documentation which relates to the use case

Continued on next page

SDLC Handbook, HB 5500-07 [-11-42 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Documentation Considerations, Continued

Event Definition: Event diagrams document the process of changing the states

Diagrams (events or status) of the object. Event diagrams show the states of an object
and how one acts on an object to move it to another state. Event diagrams can
also be used as a supplement to document requirements.

Event diagrams consist of:

* Operation: An action that one object performs upon another. The terms
method, and operation are usually interchangeable.

* Event: Some occurrence that may cause the state of a system to change

* Control Condition: A statement which identifies under what conditions an
operation is permitted to begin.

» Trigger: An action that causes an operation to begin.

SDLC Handbook, HB 5500-07 [-11-43 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Configuration Management Considerations

Overview

Object
Librarian

Baselines

The long range economies inherent in OO technology are based on the concept
of reusing previously developed objects. In order to do this efficiently,
configuration management becomes a vital function within the OO project.

However, many of the tools being used today for OO development have little
configuration management functionality.

One individual on the project shall be assigned responsibility for controlling
and managing the object library.

« Strict configuration controls shall be placed on this library so that everyone
knows which model is the current baseline.

» If an object modeling tool is used, procedures will be developed and
documented to handle copies of the same model when an Incremental Life
Cycle is used.

» The object librarian can be either a Customs employee or a contractor, as
long as a detailed process is in place and documented to address the care
and feeding of the object library.

There are two parts to the product baseline for an OO project:

» Functional Baseline
* Allocated Baseline

Both of these baselines are mandatory deliverables for each project or release of
a system using OO technology. These basclines are discussed below.

Continued on next page

SDLC Handbook, HB 5500-07 [-11-44 October 1998

Chapter 11, Development Methodologies Section E: Object Oriented (OO) Technology

Configuration Management Considerations, Continued

Functional Components: The functional baseline consists of :
Baseline

» Use Case Diagrams

» High Level Diagrams

* Requirements

Configuration Management Requirement: If an Incremental Life Cycle is
chosen for the project, there may be several versions of the use case diagrams
and the event diagrams. There must be strict controls placed on these items, so
that when a new release is being developed, there is a baseline of the previous
version of the use case and event diagrams and a mechanism for identifying the
changes from one release to the next.

Requirements: The requirements associated with the use cases need to be
documented and baselined at the same time as the use case to ensure
consistency.

Models: The model associated with the use cases should also be baselined and
strictly controlled.

Allocated Components: The allocated baseline consists of:
Baseline

* Business Object Model: A model which describes the static structure of the
objects in the business environment and the relationship(s) among the
objects

* System Component Model: A model of the parts which make up the system

* Object Model Design Document: This document describes the object model
and the data associated with the object model.

* System Modules and Programs: The software modules and programs which
make up the system

Usage: The allocated baseline will be used for unit, integration, system,
acceptance, and operational testing.

SDLC Handbook, HB 5500-07 [-11-45 October 1998

